Dedekind eta function
Definition: Let \(q=e^{2 \pi iz}\), the *Dedekind eta function* is defined as:
$$
\eta(z)=q^{\frac{1}{24}}\prod_{n=1}^{\infty}(1-q^{n})\quad z\in\mathbb H.
$$
Properties:
- Holomorphic and non-vanishing on the upper half-plane \(\mathbb H.\)
- weakly modular form of weight 1/2.
- Periodic: \(\eta(z+24)=\eta(z).\)
- \(\eta(z+1)=e^{\pi i/12}\eta{z}\)
- Modularity: \(\eta\left(-\frac{1}{z}\right)=\sqrt{-iz}\eta(z)\)